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Analytic relations are obtained for constructing the two-dimensional
temperature field of a semiconductor thermoelectric converter operat-
ing in the steady-state regime.

In recent years increasing use has been made of
semiconductor thermoelectric converters working as
de generators, . refrigerators and heat pumps.

These converters are designed on the basis of the
fundamental equations of heat balance at the cold and
hot junctions of a thermoelement obtained from the
solution of the one-dimensional problem of tempera-
ture distribution in a rod of finite length, along which
flows an electric current, the sides of the rod being
adiabatically insulated, and its end faces maintained
at constant temperatures T and Ty (T > Ty} [1].

However, in certain circumstances this is only a
poor approximation. Usually, in assembling thermo-
electric converters, the gaps between the individual
thermoelements are filled with epoxy resin or some
other high-strength polymer, whose heat conductivity
is of the same order or only one order less than that
of the thermoelectric material. In this case to find
the temperature field and obtain the heat balance
equations it is necessary to consider the two-dimen-
sional problem, .

We shall isolate in the converter an element boun-
ded by two planes passing through the center of the
thermoelement and the center of the insulating layer.
In view of symmetry, it is sufficient to consider the
temperature field of such an element. Obviously, the
planes bounding the element in question can be as-
sumed adiabatic, In solving the problem of finding
the temperature field of such an element, we shall
make the following assumptions, which are usualin
the analysis of thermoelectric converters: the tem-
peratures at the hot and cold junctions are constant
and equal, respectively, to T and Ty; the resistivity p,
the heat conductivity of the thermoelectric material,
M, and that of the insulating material, A,, are inde-
pendent of temperature; the release of Thomson heat
in the thermoelement can be neglected; and the thermo-
emf, heat conductivity and electrical conductivity for
the p- and n-type semiconductors are the same. Then
the temperature field of the isolated element is de-
scribed by the equations
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To solve Egs. (1) and (2), we multiply them by
sinknii— dx and integrate with respect to x from 0 to

1. We denote:
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After transformation of Egs. (1) and (2) with ac-

count for (3), (4), (8) and (9), we get two ordinary
linear differential equations of second order:
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After transformation, boundary conditions (5)~(7) are
written thus:
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Solution of Egs. (10) and (11) with boundary condi-
tions (12) gives values of Py(uk, ¥) and Py(uk, y),
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To determine values of the functions Ty(x,y) and
Ty(x,v) we use the inverse finite Fourier sine trans-
formation and pass from the transform of these
functions Py and Py to the inverse transform [3],
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As shown in [2], the solutions thus obtained repre-
sent the unknown functions Ty and T, at all points
within the region examined except at the boundaries
x= 0, x=1[. However, since the values of the func-
tions at these boundaries are given, it is possible to
transform the solutions obtained so that they satisfy
the entire region in question.

For this purpose we use the known sums of series
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Subtracting the obtained series for the function

To(l — x/1) + Tx/1 term by term from (15) and (16),
we obtain the solution satisfying Egs.
boundary conditions (3)—(7) over the whole of the
region examined:
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The relations obtained can be used to calculate the
temperature field of a thermoelectric converter, and
also to determine the heat flows to the junctions.

In computing the temperature field, it is sufficient
in (20), (21) to retain only the first term of the series,
since the latter converge rapidly. In this case the
error for the interval of values of the parameters
usually adopted in thermoelectric converters is not
more than 5%.

We shall formulate the heat balance equations at
the junctions (per unit thickness).

It should be kept in mind that the width of the ele-
ment in relation to which the temperature field has
been investigated is one fourth the width of the thermo-
electric pair.

At the cold junction
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at the hot junction
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After evaluation of the integrals in Egs. (22), (23),

we get
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Since the relations obtained were derived for a thermo-
electric converter of unit thickness, we can set

Sl = 461 n, Sz == 452 n,

where S, is the cross-sectional area of the thermo-
elements in em? and S, is the cross-sectional area of
the interlayers of insulation in cm?® Then
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Moreover, we can evaluate the sum of the series
in (24), (25):

With account for these transformations, the heat
balance equations at the junctions may be written:

Q= 2IT, -- % IR — (K, - K3) (T —Te),

Q= 2IT 4 ;— IR — (K, — Ko (T — Ta).

Thus, the rigorous solution shows that when the
two-dimensional temperature field is examined, the
heat flux due to release of Joule heat is divided into
two equal fluxes—to the cold and hot junctions.

It should be noted that this situation will hold only
when the gap between the semiconductors is com-
pletely filled with insulating material. Otherwise,
when the thermoelement is not insulated over its en-
tire height, the heat flux to the junctions due to the
release of Joule heat will be divided into two unequal
parts,
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The equations obtained for the heat balance at the
junctions of a thermoelectric converter can be used
to determine the optimal width of the insulating layer
between the p- and n-type semiconductors under dif-
ferent conditions of heat transfer between the junctions
and the medium. Increasing the thickness of the layer
increases the total area of the converter and reduces
the irreversible temperature drops between the junc-
tions and the surrounding media, which, on the one
hand, must lead to an increase in the efficiency of
the converter. On the other hand, an increase in the
width of the insulating layer leads to an increase in
the heat flow from the hot junctions to the cold due to
the thermal conductivity of the insulating material,
which in turn leads to a reduction in efficiency. Ob-
viously, for each design there is an optimal width of
the insulating layer corresponding to maximum effi-
ciency.

NOTATION

Qy, O-heat fluxes at cold and hot junctions of converter, W;
i=current density, A/cmz; p-resistivity, ohmecm; A;, A,—thermal
conductivity of semiconductor and insulating material, respectively,
W/cm.® C; R-total electrical resistance of thermocouple, ohms;

K;, K,—total thermal conductivity of thermocouple aind insulating
layer, respectively, W/deg; e-thermo-emf, V/deg; ! ~height of
thermoelement, cm; &y, §,-half-width of thermoelement and insul-
atiug layer, respectively (6 = 6, T &,); I-current, A; n~number of
thermocouples in converter,
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